

RAJA PEARY MOHAN COLLEGE

Department of Physics

B.Sc. Honours in Physics

Programe Specific Outcome, Course Outcome, Programe Outcome

(PSO, CO, PO)

CO, PSO and PO for Physics Honours for the new CBCS program Physics Dept., RPMC

Core Courses	Course Outcomes (CO)
CC1 Mathematical Physics I	CO1: To acquire knowledge of calculus which are integral part of any branch of Physics CO2: Understand divergence, gradient and curl and their physical interpretation which are very important for theories of electricity and magnetism to be taught later. CO3: Understand basics of matrices and determinants i.e. inverses, adjoint, linear vector spaces, basis, basis transformations, how to calculate eigenvalues, eigenvectors. Solve simple problems with physics-oriented application. CO4: To develop the problem-solving capability
CC 2 Mechanics	 CO1: Students learn accurately how to describe motion of objects, planetary motions, gravitation etc. Understand the motion of objects in different frame of references. CO2: Know how to apply the conservation principle and symmetry of a system. CO3: Understand laws of motion, reference frames, and its applications i.e. projectile motion, simple harmonic oscillator, Rocket motion, elastic and inelastic collisions. CO4: Understand the idea of conservation of angular momentum, central forces effective potential. CO5: Understand the application of central force to the stability of circular orbits, Kepler's laws of planetary motion. CO6: Understand the dynamics of rotating objects i.e. rigid bodies, angular velocity, the moment of inertia and related examples involving the centrifugal force and coriolis force. CO7: Learn about Fluid motions, Archimedes Principle, Euler equation, Bernoulli's, Pascals Law etc.

CC3 Electricity and Magnetism	 CO1:To learn about basic concepts of electrical charges and currents and their properties CO2: Enhance problem solving capability based on various realistic situation CO3: Understand the concept of conductors, dielectrics, inductance and capacitance, and electrical image charge. CO4: Gather knowledge on the nature of magnetic materials. CO5: Understand the concept of static field and potential. CO6: Gain knowledge on electromagnetic induction and Faraday's law and its applications
CC4 Waves and Optics	CO1: Student learn about various types of waves and their propagation, superposition of waves. CO2: To provide a basic understanding of physical optics CO3: To provide a knowledge of various optical phenomena, for example interference, diffraction, and optical instruments.
CC5 Mathematical Physics II	 CO1: Understand how to expand a function in a Fourier series. CO2: Solving differential equation using power law expansion (so called Frobenius method). Learn about various special functions i.e. Legendre, Bessel functions, generating functions and their properties. CO3: Fourier integral and its properties and application to signal analysis and also in quantum mechanics CO4: Application of probability and various distribution functions in Physics. CO5: Learn to solve partial differential equation which is very important in all branches of physics.
CC6 Thermal Physics	 CO1: To understand the principle of calorimetry CO2: Understand the basic principle and laws of Thermodynamics CO3: Understand the concepts of Entropy, various thermodynamic potentials and their applications in various systems. CO4: Understanding of first and second order phase transition with examples. CO5: Gain knowledge about microscopic behavior of systems in explaining pressure, transport properties, viscosity, diffusion etc.

CC7 Modern Physics	 CO1: Black body Radiation and its nature, old quantum theory, concept of wave-particle duality and de Broglie hypothesis. CO2: Introduction to Schrodinger equation and its Application, probabilistic interpretation of quantum mechanics, commutation relation and their meaning. CO3: To inculcate basic understanding in Quantum Mechanics. CO4: Students learn about Nuclear structure and various models. CO5: Understanding of Interaction within and with nucleus. Gamma, Beta decay. Nuclear Fission and Fusion. CO6: To know about working principle of LASER and its applications.
CC8 Mathematical Physics III	 CO1: To study complex analysis, Cauchy Riemann conditions, Analyticity, Cauchy Integral formula, Laurent and Taylor series expansion and definite integrals using contour integration. CO2: To learn about variational calculus, optimization theory. Lagrangian and Hamiltonian formulation, Euler-Lagrange equation, Use of symmetry and conservation laws. CO3: To understand special theory of relativity, length contraction, time dilation, mass-energy relation etc. CO4: Relativistic dynamics, Minkowski Space-time, Proper time etc. CO5: Introduction to Tensor calculus, Covariant and Contravariant tensors, Metric tensor, relativity in 4-vector notation.
CC9 Analog Electronics	 CO1: To motivate the students to apply the principles of electronics in their day-to-day life. CO2: Learn various network theorems, diodes and their application CO3: Study various theory and working principles of ansistors, FET, regulated power supply, amplifiers, concept of edback, OPAMP, Multivibrators and Oscillators
CC10 Quantum Mechanics	CO1: Students solve various various quantum mechanical features by solving various potentials: example, Finite well, Harmonic oscillator CO2: Learn Quantum theory of Hydrogen atoms, solution of Schrodinger equation under central force, Orbital angular momentum and spin angular

	momentum CO3: To know generalized angular momenta, Electron's magnetic moment, Energy of a magnetic dipole, Stern- Garlach experiment CO4: To study Fine structure of hydrogen atoms, atoms in presence of electric and magnetic fields application of Quantum mechanics for atomic systems CO5: To learn Many electron atoms, identical particles, Pauli Exclusion principle.
CC11 Electromagnetic Theory	 CO1: Learn Maxwell's equations, gauge transformations, Pyonting vector, Electromagnetic field energy density, momentum density etc. CO2: Propagation of electromagnetic wave through medium CO3: Polarization in uniaxial crystals and rotatory polarization.
CC12 Statistical Mechanics	CO1: To understand statistical properties of matter, connections with thermodynamics CO2: To use these theory in practical systems (ideal gas, Bose and Fermi systems), Identical particles CO3:To learn Bose-Einstein statistics, and its application, Fermi-Dirac statistics and its application CO4: Quantum theory of radiation.
CC13 Digital systems and applications	CO1:To learn integrated circuits(IC), number system and Boolean description, introduction to logic systems, various Gates CO2: To understand product and sum in logical expression, conversion between truth table and logical expression, Karnaugh map CO3: To learn how to Implement different circuits: adder, subtractor, idea of multiplexer, demultiplexers, encoder, decoder CO4: To know registers and counters, computer organization, data conversion.
CC14 Solid State Physics	CO1: To learn crystal structure, lattice dynamics CO2: To understand quantum properties of matter like magnetic and dielectric properties. CO3: To understand elementary band theory CO4: Superconductivity, Meissner effect and introduction to BCS theory.

Discipline Specific Elective Subjects (DSE)	Course outcomes
DSEA1(a) Advanced Mathematical Methods	CO1: To learn Linear Algebra and vector space CO2: To understand tensors and tensor algebra CO3: To know group theory and its application
DSEA1(b) Laser and Fiber Optics	CO1: To know theory of laser, its basic properties CO2: To learn about resonators, transient effect, many laser systems and practical use of laser CO3: To understand Fiber optics, Holography and introductory nonlinear optics.
DSEB1 (a) Astronomy and Astrophysics	CO1: Gain knowledge on various tools of astronomy, basic introduction of starts, galaxies, interstellar medium, mass and length scales of astronomy CO2: To learn observational tools of astronomy CO3: To understand star and other stellar systems, formation and evolution of stars CO4: To know about the galaxies and its components CO5: To learn basics of cosmology, redshift, field equations and accelerating universe
DSEB1 (b) Nulcear and Particle Physics	CO1: To learn general properties of nuclei, various nuclear models, radioactivity CO2: To understand nuclear reactions and interaction of nuclear radiation with matter CO3: To know about the detectors for nuclear radiations and particle accelerators CO4: To learn and understand fundamentals of particle physics.
DSEA2 (a) Nano Materials and applications	CO1: To learn about nanoscale systems, their band structures, application of Schrodinger equation for such nano structures CO2: To know how to synthesis nano materials and how to characterize them CO3: To know various properties of nano materials, e.g. optical and electrical (transport) properties
DSEA2(b) Advanced Classical Dynamics	CO1: To understand calculus of variation CO2: To learn about small oscillations CO3: To understand about rigid body motion CO4: To know about non-linear dynamics

DSEB2(a) Communication Electronics	 CO1: To introduce students to basics of electronic communication. CO2: To learn analog modulations and to modulate analog pulse. CO3: To learn how to modulate digital pulse. CO4: Students are introduced to communication and navigation system, which has many modern day applications.
DSEB2(b) Advanced Statistical Mechanics	 CO1: To review classical statistical mechanics CO2: To understand Quantum Statistical Mechanics CO3: To learn ideal Bose and Fermi systems CO4: To learn Ising model and non-equilibrium statistical mechanics

Skill Enhancement Courses (SEC)	Course outcomes (CO)
SEC A-1 Scientific Writing	CO1: Students learn Latex, a program system to write scientific papers and documents,
	CO2: To learn how to insert various mathematical symbols in a document
	CO3: To learn how to insert a figure or a table in a report or article.
SEC A-2 Renewable energy and Energy Harvesting	CO1: Students learn about fossil fuels and its hazards
	CO2: Need for alternative energy sources, how to harvest energy from various non-conventional energy sources.
	CO3: Know about Piezoelectric Energy and Electromagnetic Energy harvesting, Fuel cell.
SEC B-1 Arduino	CO1: Students learn Arduino, which is basically an open-source electronics proto-type which itself can be used as a circuit
	CO2: Arduino programming, interfacing.
SEC B-2 Electrical Circuits and Network Skills	CO1: Students know about various electrical instruments (generators, transformers, AC motor etc).
	CO2: Single phase and three phase ac devices, CO3: Measurements and faults distribution system.

Practical Topics	Course outcomes
Practicals of Mechanics, Thermodynamics, Electricity and Magnetism, Waves, Optics, Modern Physics	 Various theories which students learn in theory lesson are verified in practical classes. Students learn various practical situation, how to handle tools and instruments, measurement techniques, graph plotting, statistical/error estimations etc. Physics is essentially a practical based subject, knowledge of proving/disproving a certain theory is important. Practicals bridge between theoretical knowledge and real-life situation
Practicals based on Computation and Programming (Python language)	 Understand how to write an algorithm, iteration techniques Various numerical methods to solve many problems numerically. e.g. finding solution of a equation, integration and differentiation etc. Plotting different kinds of graphs, how to label them etc.
Program Specific Outcome (PSO)	 PSO1: Physics deals with a wide variety of systems, from microscopic level (atoms, nucleus) to Astronomical level (Sun, galaxy). Basic principles are more-or-less same used by physicists at every level. Each of these theories are experimentally verified in a number of ways and found to be a sufficiently appropriate description of nature. Students get oriented along this line of thinking and earn enough proficiency to use Physical Principles/concepts to explain various phenomena. PSO2: Physics uses mathematics as a medium to organize and formulate experimental results. Students gather handsome knowledge on mathematics required for formulating and solving problems. PSO3: Students learn to perform various types of numerical calculations. PSO4: Students have learned laboratory skills, enabling them to take measurements in a physics laboratory and analyze the measurements to draw valid conclusions. PSO5: Students will develop good oral and written scientific communication skill. PSO6: Students learn to think critically and work independently.

Program Outcome (PO)	PO1: This programme helps to develop scientific
	aptitude among the students and thus can be highly
	beneficial for the society and for nation building.
	PO2: This programme helps to develop critical
	thinking, creativity, analytical and problem-solving
	skills among the students.
	PO3: The main cognitive outcome of the program
	is that the student should be able to explain an
	otherwise unknown situation/problem on their
	own based on what they have learnt.
	PO4: The students will be able to learn necessary
	computational skill, and use of ICT required for an
	effective learning experience and further progress
	to higher studies.
	PO5: The mathematical skill and theoretical
	principles learnt during the three-year program,
	help them motivate and contribute to the society
	by actively participating in innovative research,
	teaching. Also, they can induce rational thinking
	to the society.
	PO6: After completion of this programme the
	students will be eligible to pursue higher studies
	in basic sciences (M.Sc.) in different Universities,
	IIT's, IISER's, NIT's and other reputed institutes
	of higher education in India and abroad, and then
	choose research career for the welfare of mankind
	and society.
	PO7: Students after completion of this
	programme have the eligibility to join jobs in
	Indian Civil Services as IAS, IFS, IPS etc.,
	WBCS, UPSC, Banking Sector, Railways,
	Airlines, technical jobs at research institutes or as
	school teacher through SSC.
	PO8: The students will be able to engage
	themselves in independent thinking and lifelong
	learning in the present context of scientific and
	technological advancement.

